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ABSTRACT 
 

In this paper, the free vibration of the beam on elastic foundation is studied using finite 

element method. To this end, a two- node Timoshenko element is used for beam modeling. 

Each node in this element has a rotational and translational degree of freedom, which 

encompasses all four degrees of freedom. The displacement and rotational fields of this 

beam is selected from the third and the second order, respectively. Moreover, the shear 

strain of the element is assumed as a constant value. Interpolation functions for displacement 

field and beam rotation are explicitly calculated by employing total beam energy and it's 

stationary with respect to shear strain. Also, two-parameter elastic foundation model is used. 

In this method, the soil is modeled as a layer of Winkler springs with a shear layer on it. 

Next, by utilizing the interpolation functions, the stiffness matrices of beam and foundation, 

as well as their mass matrices are introduced; hence, the free vibration analysis on the elastic 

foundation is carried out. Finally, after conducting several tests, the high efficiency and 

accuracy of the proposed element is demonstrated. 

 

Keywords: Finite element; free vibration; Timoshenko beam; Pasternak; elastic foundation. 

 

 

1. INTRODUCTION 
 

In the analysis of such structures as buildings foundations, highways, and railways, there is a 

need for modeling the beams on elastic foundation. In order to simplify the modeling of soil-

foundation interaction, soil environment is assumed homogeneous and isotropic with linear 

elastic behavior. Beam modeling on elastic foundation have been extensively presented in 

previous studies; in order to model the foundation of structures, models such as Winkler, 
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Pasternak, Vlasov, and Flonenko-Borodich are currently being used. As the simplest model 

for modeling foundation, Winkler is presented in 1867, in which the relationship between 

pressure and vertical displacement of the foundation is modeled as linear springs [1]. In 

contrast, in Pasternak's two-parameter model, soil is modeled as a layer of Winkler springs 

as well as a shear layer. Therefore, the latter provides a more accurate method compared to 

simpler models like the Winkler foundation.  

So far, several studies have been carried out for the analysis of free vibration. Zhou 

studied the free vibration of beams on Winkler elastic foundation [2]. Eisenberger 

investigated the free vibration response of the beam on Winkler elastic foundation with 

variable stiffness [3]. Also, Eisenberger and Clastorink examined the buckling and vibration 

of beams on these foundations [4]. Further studies on the Winkler foundation can be found 

in Refs. [5] and [6]. Auersch carried out a study about infinite beams on half-space 

compared with finite and infinite beams on a Winkler support [7]. These models are 

typically used in the analysis of railways. A study of infinite beam models, giving 

importance on asymptotic behavior at high frequencies, was conducted by Ruge and Birk 

[8]. Oz and Pakdemirli examined the resonances of shallow beams resting on elastic 

foundations [9]. 

Up to now, few studies have been carried out on the Pasternak foundation compared to 

that of Winkler. De Rosa and Maurizi [10] calculated the exact free vibration frequencies of 

an Euler beam on elastic foundation. They modeled the soil environment as a two-parameter 

elastic medium. Franciosi and Masi [11] performed the free vibration analysis of Euler-

Bernoulli beam on Pasternak foundation using finite element analysis. Using Green's 

functions, Wang et al. [12] offered an exact solution of the free vibration of Timoshenko 

beam on Pasternak foundation. Chen et al. [13] proposed a mixed method based on 

differential quadrature (DQ) formulation, for bending and free vibration of arbitrarily thick 

beams resting on a Pasternak elastic foundation. Chen [14] developed a new differential 

quadrature element method (DQEM) for free vibration analysis of prismatic beam on an 

elastic foundation. Calio and Greco [15] carried out the free vibration and stability of 

axially-loaded Timoshenko beams on Pasternak foundation through dynamic stiffness 

matrix method. Other researchers, too, have studied the analysis of elastic foundations with 

Winkler-Pasternak models, Refs. [16, 17]. 

In this paper, the free vibration of Timoshenko beam on Pasternak foundation is studied 

by finite element method. To this end, an element beam with two nodes was first modeled so 

that each node has a transitional and rotational degree of freedom. The displacement and 

rotational fields of this element were selected from the third and the second order 

respectively. The shear strain of the element was assumed constant. Having considered the 

total strain energy of the beam element as stationary with respect to the shear strain, the 

shape functions were calculated for the displacement field and the beam rotation. Using 

these interpolation functions, stiffness and mass matrices of the beam as well as the stiffness 

matrix of the foundation were calculated. At the end, compared with other methods, the 

accuracy and efficiency of the proposed element was confirmed via numerical methods.  
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2. TWO-NODE BEAM ELEMENT FORMULATION 
 

In the finite element formulation, the displacement and rotation functions are related to the 

nodal degrees of freedom by shape functions. The shape functions of the Timoshenko beam 

were calculated based on Fig. 1. In order to compute the shape function of the beam in Fig. 

1, a cubic displacement polynomial and a quadratic rotational field were selected. Moreover, 

it was assumed that the shear strain has a constant value of 
0
 . Based on these, the 

following equations can be assumed: 
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l
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Figure 1.Timoshenko beam element 

 

In these relations, 1 0 0, ,   and 0 are unknown parameters. In order to determine their 

values, the equation of shear strain for Timoshenko beam was first established. By 

considering the shear strain value equal to 0 , the subsequent equalities will be available: 

 

2dw dw

dx l ds
        (5) 
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l
      

      
              

    
 (6) 

 

In the relation (6), coefficients of the terms s and 
2s are equivalent to zero. Therefore, in 

the following lines, 0 1,   are determined in terms of the unknown parameter 0 : 
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 0

1

8
i j     (8) 

0 0

3 1

2 2
 

 
    

 
 (9) 

1 0

1

6
   (10) 

 

At this stage, there is only one unknown constant 0 which can be determined from the 

condition of minimum strain energy. It should be added that the structural strain energy is 

the sum of bending and shear strain energy. Bending strain energy is calculated in the 

following way: 

 
1

2 2

0 12 4

l

b

EI EIl
U dx ds 


    (11) 

 

In this equation, EI and  represents the stiffness and curvature of beam, respectively. 

The curvature  is determined as below: 

 

0
0

2
6

sd

l ds l


       (12) 

 0

1
3i j s

l
       (13) 

 

Substituting these equations into (11) leads to the below bending strain energy: 

 
2

0 0
0 6b

D D
U U

l l

  
    

 
 (14) 

1
2

0 0
14

Dl
U ds


   (15) 

 

Besides, the next equation determines the energy of shear strain: 

 
1

2 2 2

0 0
0 12 4 2

l

s

s s s

GA GAl GAl
U dx ds

f f f
  


     (16) 

 

In the equations (16), sf is shear correction factor, which is equal to 6/5 for beam with 

rectangular cross section. By adding the bending and the shear strain energy together, total 

strain energy was found as follows: 
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2 2

0 0 0 0

6 6

2
b s

s

EI EI GAl
U U U U

l l f
  


       (17) 

 

Implementing 0 0U     will give the following results: 
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Substitution of 1 0 0, ,    and 0  into relations (1) and (2) results in the following 

interpolation functions for Timoshenko beam: 
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Therefore, by using the interpolation  N , the strain field   and the strain matrix  B  

were obtained as follows: 
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    
E

dw

dx
B D
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dx





 
  

  
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   
0

1

d

dx
B N

d

dx

 
 

  
 
  

 (23) 

 

In the equation (22),  
E

D is the nodal displacement.  

 

 

3. EQUATIONS OF MOTION 
 

Fig. 2 shows the Timoshenko beam on Pasternak foundation. In this model, the normal 

stress  ,x t and vertical displacement  ,w x t at an arbitrary point of the lower boundary 

of the beam provide the following relation [13]: 

 

   
 2

2

,
, ,w p

w x t
x t K w x t K

x



 


 (24) 

 

Where wK  and 
pK  are the Winkler and shearing layer elastic foundation moduli, 

respectively. The shearing soil parameter
pK  can be estimated as [11]: 

 

 4 1

s
p

s

E B
K

 



 (25) 

 

Where B is the width of the beam and   is a parameter which characterizes the 

distribution of displacements along the vertical direction in the elastic foundation. Also, sE  

and s are Young’s modulus and Poisson’s ratio of soil, respectively. 

 

 
Figure 2.Geometry of a beam on Pasternak foundation 
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For a uniform beam resting on two-parameter foundation, the total potential energy can 

be obtained as follows: 

 

U T     (26) 
2

2 2 2
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l l l lp w

s

K KEI GA dw
U dx dx dx w dx

f dx
 
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 
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In the equation (28), w and  are respectively the derivations of translation and rotation 

fields with respect to time. By substituting the relations (20) to (22) in the above equations, 

the internal and kinematic energy can be evaluated as: 
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
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The elasticity matrix  mD for the Timoshenko beam has the following shape: 

 

 
0

0m

s
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D GA
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 
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Introducing the total potential energy    into Hamilton’s principle leads to the matrix 

equation governing the free vibrations of the Timoshenko beam on the Pasternak elastic 

foundation as follows: 

 

      0
EE

M D K D   (32) 

 

Where,  K  and  M  are the stiffness and mass matrices, respectively. The stiffness 

matrix is given by: 
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The beam stiffness matrix  BK  was obtained as: 

 

 
2 2

3

2 2
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Also, the stiffness matrix of shear layer of foundation  1FK  was calculated as below: 

 

 
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The entries of this matrix can be defined as follows: 
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Additionally, the stiffness matrix of Winkler layer of foundation  2FK  was obtained as 

follows: 

 

 
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In the following, the entries of this matrix are introduced: 
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The mass matrix of the beam element  M  in relation (32) includes the two following 

parts, one related to translations and the other to rotations: 

 

             
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1 2
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
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In this equation, 𝜌 is the mass density of the material of the beam and 𝐼 is the second 

moment of area of cross section. The translation mass matrix  1M was obtained as follows: 
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The entries of this matrix can be defined as: 
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In addition, the rotation mass matrix  2M was obtained as follows: 
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2
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2 2
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Where 
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By assembling the mass and stiffness matrix of the elements, the total mass and stiffness 

matrix can be obtained, respectively. For free vibration analysis, the assembled nodal 

displacement vector D  is assumed to be harmonic in time with circular frequency as 

follows: 

 

    sinD t W  (43) 

 

Where W  is the vector of nodal displacement amplitudes of vibration. By substituting 

the relation (43) into (32), the following eigenvalue is obtained: 

 

     2 0K M W     (44) 

 

For the non-trial solution of equation (44), it is essential that the determinant of matrix 

  2K M  
 be zero at the correct natural frequencies. Therefore, the values of natural 

frequency  were obtained. 

 

 

4. NUMERICAL TESTS 
 

In this section, the efficiency and accuracy of the proposed element for free vibration 

analysis of beams on elastic foundation was investigated. To achieve this goal, the 
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dimensionless frequency for the proposed element was compared with the results of 

previous studies. The dimensionless frequency   is defined as: 

 

2 A
l

EI


   (45) 

 

Also, the dimensionless elastic and shear modulus of the foundations are defined as 

follows: 

 
24

2
,

pw
w p

K lK l
K K

EI EI
   (46) 

 

To reveal the accuracy and efficiency of the proposed element, three tests were 

conducted in the present paper; as the first test, the effect of the number of degrees of 

freedom on the accuracy of free vibration of a simply supported thin beam (t/l =0.001) on 

the elastic foundation was examined. The shear and elastic modulus of the soil were 

2.5
p

K =  and 610
w

K =  respectively. The results of this analysis along with those of the 

previous studies are represented in Table (1). 

 

Table 1: The first three natural frequency parameters   for simply supported beam 

Proposed element 
Franciosi & 

Masi [11] 

Exact (Rosa & 

Maurizi [10]) 
DOFs 

31.625 - 31.625 

6 31.646 - 31.643 

31.736 - 31.702 

    

31.625 33.790 31.625 

10 31.643 34.058 31.643 

31.704 34.405 31.702 

    

31.625 32.695 31.625 

20 31.643 32.710 31.643 

31.702 32.769 31.702 

    

31.625 31.740 31.625 

40 31.643 31.763 31.643 

31.702 31.832 31.702 

 

In the second test, three dimensionless frequencies parameters for two problems of beams 

resting on elastic foundation with the simply and the clamped support with various ratios of 

thickness to length were computed. The results of this analysis were provided in tables (2) and 
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(3). As shown in these tables, it is observed that the accuracy and convergence rate of the 

proposed element for the analysis of beams with various thicknesses is satisfactorily high.  

Furthermore, the first four mode shapes corresponding to a thin beam (t/l =0.001) with 

simply-supported and clamped supports are shown in Fig. 3 and 4, respectively. These 

figures are plotted using 20 proposed elements. Moreover, in Fig. 5 the first dimensionless 

frequency was given as a function of the Winkler foundation parameter, for beams with 

different boundary conditions (i.e. clamped, simply, and simply-clamped beams).This figure 

reveals that beam with simply support is more sensitive to the variation in the foundation 

parameter
wK . 

 

 

 
Figure 3. Mode shapes of simply-supported beam on Pasternak foundation ( 2.5

p
K =  and

610
w

K = ) 
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Figure 4. Mode shapes of clamped support beam on Pasternak foundation ( 2.5
p

K =  and

610
w

K = ) 

 

Table 2: Convergence and accuracy of the first three dimensionless natural frequencies  
 
for 

simply-supported beam 

Chen et al. [13] Number of element t/l 

 20 15 10 5  

4.1436 4.1436 4.1436 4.1436 4.1437 1/120 

- 6.7261 6.7261 6.7263 6.7304  

- 9.6993 9.6997 9.7017 9.7344  

       

 4.1347 4.1362 4.1362 4.1362 4.1363 1/15 

 - 6.6491 6.6495 6.6506 6.6595  

 - 9.4365 9.4394 9.4484 9.5136  

       

 4.0664 4.0839 4.0840 4.0841 4.0849 1/5 

 - 6.2176 6.2195 6.2250 6.2557  

 - 8.2804 8.2912 8.3219 8.4869  

 

Table 3: Convergence and accuracy of the first three dimensionless natural frequencies  
 
for 

clamped support beam 

Chen et al. 

[13] 

Number of element t/l 

20 15 10 5  

5.1834 5.1814 5.1814 5.1815 5.1825 1/120 

8.1247 8.1205 8.1206 8.1214 8.1354  

11.1878 11.1825 11.1833 11.1878 11.2573  

       

 5.1254 5.1233 5.1234 5.1237 5.1260 1/15 

 7.8928 7.8856 7.8868 7.8904 7.9180  

 10.6388 10.6282 10.6340 10.6520 10.7764  

       

 4.7910 4.7930 4.7935 4.7950 4.8031 1/5 

 6.8471 6.8343 6.8384 6.8501 6.9163  

 7.4091 8.6778 8.6927 8.7357 8.9637  
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Figure 5. Curve of frequency parameter 1 versus wK for beams with different boundary 

conditions ( 2.5
p

K =  and t/l =0.001) 

 

Finally, the free vibration analysis of thin beams (t/l =0.001) with different values of 

elastic foundation parameters was performed for simply and clamped support beams. The 

three dimensionless frequencies parameters   for these tests were shown in Tables (4) and 

(5) respectively and the results were compared with the findings of other researchers. To 

compare these results with that of reference [10], 15 proposed elements were utilized for the 

analysis. These tables reveal that the accuracy of the proposed element in the free vibration 

analysis of the beam on foundations with different characteristics is considerably high. 

 

Table 4: The effect of foundation parameters on the three natural frequency parameters   for 

simply-supported beam 

Proposed element  
Rosa & 

Maurizi 

[10] 

 
Chen et 

al. [13] 
 Exact     

3  2  1   1   1   1    wK  pK  

9.4248 6.2832 3.1416  3.1416  3.1414  3.1416   0 

0 9.4545 6.3816 3.7484  3.7483  3.7482  3.7484   100 

11.5652 10.3687 10.0243  10.0240  10.0240  10.0243   10000 

             

9.553 6.4709 3.4767  3.4767  3.4766  3.4767   0 

0.5 9.5816 6.5613 3.9608  3.9608  3.9607  3.9608   100 

11.6354 10.4122 10.0363  10.0360  10.0361  10.0363   10000 
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9.6763 6.6437 3.7360  3.7360  3.7359  3.7360   0 

1 9.7038 6.7273 4.1437  4.1437  4.1436  4.1437   100 

11.7044 10.4550 10.0484  10.0480  10.0481  10.0484   10000 

             

10.0204 7.0940 4.2970  4.2970  4.2969  4.2970   0 

2.5 10.0452 7.1630 4.5824  4.5824  4.5823  4.5824   100 

11.9042 10.5806 10.0842  10.0840  10.0839  10.0842   10000 

 

Table 5: The effect of foundation parameters on the three natural frequency parameters   for 

clamped support beam 

Proposed element Chen et al. [13] 
Exact (Rosa & Maurizi 

[10]) 
  

3  2  1  3  2  1  3  2  1  wK  pK  

10.9956 7.8532 4.7300 10.9908 7.8533 4.7314 10.996 7.854 4.73 0 

0 11.0144 7.9043 4.9504 11.0096 7.9044 4.9515 11.014 7.904 4.95 100 

12.5260 10.8392 10.1229 12.5216 10.8384 10.1227 12.526 10.839 10.123 10000 

           

11.0862 7.9678 4.8670 11.0815 7.9680 4.8683 11.086 7.968 4.868 0 

0.5 11.1045 8.0168 5.0707 11.0998 8.0169 5.0718 11.104 8.017 5.071 100 

12.5876 10.8835 10.1374 12.5832 10.8827 10.1373 12.588 10.883 10.137 10000 

           

11.1747 8.0775 4.9926 11.1700 8.0777 4.9938 11.174 8.078 4.994 0 

1 11.1926 8.1245 5.1824 11.1878 8.1247 5.1834 11.192 8.124 5.182 100 

12.6483 10.9272 10.1518 12.6439 10.9264 10.1517 12.648 10.927 10.152 10000 

           

11.4279 8.3811 5.3184 11.4233 8.3812 5.3195 11.43 8.381 5.32 0 

2.5 11.4446 8.4232 5.4773 11.4400 8.4234 5.4783 11.444 8.423 5.477 100 

12.8252 11.0546 10.1943 12.8209 11.0539 10.1942 12.825 11.055 10.194 10000 

 

 

5. CONCLUSION 
 

In this paper, an efficient finite element method for free vibration analysis of Timoshenko 

beams on elastic foundation was presented. The Pasternak assumption was applied with an 

aim to model the foundation. This model was found to provide relatively more accurate 

results. Also, a two-node Timoshenko element was introduced for the beam on the 

foundation. The stiffness matrices of the beam and foundation as well as the mass matrix of 

the beam element were also explicitly computed. Finally, in order to demonstrate the 

capability of the proposed element, numerical tests were performed for the free vibration 

analysis of beams with simply and clamped supports. These tests demonstrated the high 

accuracy and efficiency of the proposed element for free vibration analysis of beams on 

elastic foundation. 
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